Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Document Type
Year range
1.
Front Public Health ; 11: 1177965, 2023.
Article in English | MEDLINE | ID: covidwho-2327407

ABSTRACT

Objectives: As global efforts continue toward the target of eliminating viral hepatitis by 2030, the emergence of acute hepatitis of unspecified aetiology (HUA) remains a concern. This study assesses the overall trends and changes in spatiotemporal patterns in HUA in China from 2004 to 2021. Methods: We extracted the incidence and mortality rates of HUA from the Public Health Data Center, the official website of the National Health Commission of the People's Republic of China, and the National Notifiable Infectious Disease Surveillance System from 2004 to 2021. We used R software, ArcGIS, Moran's statistical analysis, and joinpoint regression to examine the spatiotemporal patterns and annual percentage change in incidence and mortality of the HUA across China. Results: From 2004 to 2021, a total of 707,559 cases of HUA have been diagnosed, including 636 deaths. The proportion of HUA in viral hepatitis gradually decreased from 7.55% in 2004 to 0.72% in 2021. The annual incidence of HUA decreased sharply from 6.6957 per 100,000 population in 2004 to 0.6302 per 100,000 population in 2021, with an average annual percentage change (APC) reduction of -13.1% (p < 0.001). The same result was seen in the mortality (APC, -22.14%, from 0.0089/100,000 in 2004 to 0.0002/100,000 in 2021, p < 0.001). All Chinese provinces saw a decline in incidence and mortality. Longitudinal analysis identified the age distribution in the incidence and mortality of HUA did not change and was highest in persons aged 15-59 years, accounting for 70% of all reported cases. During the COVID-19 pandemic, no significant increase was seen in pediatric HUA cases in China. Conclusion: China is experiencing an unprecedented decline in HUA, with the lowest incidence and mortality for 18 years. However, it is still important to sensitively monitor the overall trends of HUA and further improve HUA public health policy and practice in China.


Subject(s)
COVID-19 , Communicable Diseases , Hepatitis, Viral, Human , Child , Humans , Pandemics , COVID-19/epidemiology , Communicable Diseases/epidemiology , China/epidemiology , Hepatitis, Viral, Human/epidemiology
2.
Dili Xuebao/Acta Geographica Sinica ; 77(2):443-456, 2022.
Article in Chinese | Scopus | ID: covidwho-1726806

ABSTRACT

It is essential to unravel the spatial and temporal patterns of the spread of the epidemic in China during the backdrop of the global coronavirus disease 2019 (COVID-19) outbreak in 2020, as the underlying drivers are crucial for scientific formulation of epidemy-preventing strategies. A discriminant model for the spatio-temporal pattern of epidemic spread was developed for 317 prefecture-level cities using accumulated data on confirmed cases. The model was introduced for the real-time evolution of the outbreak starting from the rapid spread of COVID-19 on January 24, 2020, until the control on March 18, 2020. The model was used to analyze the basic characteristics of the spatio-temporal patterns of the epidemic spread by combining parameters such as peak position, full width at half maximum, kurtosis, and skewness. A multivariate logistic regression model was developed to unravel the key drivers of the spatio-temporal patterns based on traffic accessibility, urban connectivity, and population flow. The results of the study are as follows. (1) The straight-line distance of 588 km from Wuhan was used as the effective boundary to identify the four spatial patterns of epidemic spread, and 13 types of spatio-temporal patterns were obtained by combining the time-course categories of the same spatial pattern. (2) The spread of the epidemic was relatively severe in the leapfrogging model. Besides the short-distance leapfrogging model, significant differences emerged in the spatial patterns of the time course of epidemic spread. The peaks of the new confirmed cases in various spatio-temporal patterns were mostly observed on February 3, 2020. The average full widths at the half maximum of all ordinary cities were approximately 14 days, thus, resonating with the incubation period of the COVID-19 virus. (3) The degree of the population correlation with Wuhan city has mainly influenced the spreading and the short-distance leapfrogging spatial patterns. The existence of direct flight from Wuhan city exhibited a positive effect on the long-distance leapfrogging spatial pattern. The number of population outflows has significantly affected the leapfrogging spatial pattern. The integrated spatial pattern was influenced by both primary and secondary epidemic outbreak sites. Thus, cities should pay great attention to traffic control during the epidemic as analysis has shown that the spatio-temporal patterns of epidemic spread in the respective cities can curb the spread of the epidemic from key links. © 2022, Science Press. All right reserved.

SELECTION OF CITATIONS
SEARCH DETAIL